👌Когда метод опорных векторов (SVM) может превосходить глубокую нейросеть на практике
SVM может показывать лучшие результаты, когда объём данных небольшой, но признаковое пространство — высокоразмерное и хорошо различающее. Особенно это актуально в узкоспециализированных задачах, где трудно собрать большие размеченные выборки (например, в медицине или биоинформатике).
Если удаётся подобрать подходящую ядровую функцию, SVM может эффективно аппроксимировать сложные границы между классами без необходимости обучения миллионов параметров, как в нейросетях.
⚠️На что стоит обратить внимание: — Глубокие нейросети склонны к переобучению на малых данных. Без правильной настройки регуляризации и архитектуры они могут хуже обобщать, чем более простые модели. — Нейросетям часто нужны хорошие инициализации весов, продвинутые оптимизаторы и большие вычислительные ресурсы. При неправильной конфигурации они могут проигрывать по скорости и стабильности SVM. — SVM проще интерпретировать и отлаживать в задачах с ограниченными ресурсами или когда важна воспроизводимость.
📌Вывод: Если данных мало, но признаки хорошо различают классы — не стоит сразу переходить к нейросетям. Грамотно настроенный SVM может быть не только быстрее, но и точнее.
👌Когда метод опорных векторов (SVM) может превосходить глубокую нейросеть на практике
SVM может показывать лучшие результаты, когда объём данных небольшой, но признаковое пространство — высокоразмерное и хорошо различающее. Особенно это актуально в узкоспециализированных задачах, где трудно собрать большие размеченные выборки (например, в медицине или биоинформатике).
Если удаётся подобрать подходящую ядровую функцию, SVM может эффективно аппроксимировать сложные границы между классами без необходимости обучения миллионов параметров, как в нейросетях.
⚠️На что стоит обратить внимание: — Глубокие нейросети склонны к переобучению на малых данных. Без правильной настройки регуляризации и архитектуры они могут хуже обобщать, чем более простые модели. — Нейросетям часто нужны хорошие инициализации весов, продвинутые оптимизаторы и большие вычислительные ресурсы. При неправильной конфигурации они могут проигрывать по скорости и стабильности SVM. — SVM проще интерпретировать и отлаживать в задачах с ограниченными ресурсами или когда важна воспроизводимость.
📌Вывод: Если данных мало, но признаки хорошо различают классы — не стоит сразу переходить к нейросетям. Грамотно настроенный SVM может быть не только быстрее, но и точнее.
Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.
Библиотека собеса по Data Science | вопросы с собеседований from id